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Letters 

Thermal conductivity of epoxy- 
aluminium powder mixtures 

The following symbols are used in this letter: 

A = area normal to heat flow (cm 2) 
C = specimen conductance (calsec -1 

~ 

Ca = conductance of aluminium (calsec -1 
~ ) 

Cc = conductance of aluminium-epoxy (cal 
sec-1 oc-1  ) 

Ce = conductance of epoxy (calsec -1 ~ -1) 
Cw = conductance of water films (calsec -1 

~  

C~  = conductance of air films (cal sec -1 ~ -1) 
Cdry = conductance of dry specimen (cal 

s e c - 1 0 c - 1  ) 

Cwet = conductance of wet specimen (cal 
sec-1 Oc-1) 

d = thickness of epoxy shell around 
aluminium (cm) 

f = fractional increment of  radius (dimen- 
sionless) 

g = fractional decrement of radius (dimen- 
sionless) 

k = thermal conductivity of specimen (cal 
sec-1 cm -1 ~ ) 

ka = thermal conductivity of aluminium (cal 
sec-1 cm-a ~ 

k~ = thermal conductivity of  composite (cal 
sec-1 cm-1 ~ 

ke = thermal conductivity of epoxy (cai 
sec-1 cm-1 OC-1) 

kh = thermal conductivity for hexagonal 
packing (cal sec -1 cm -I ~ -1) 

kk = thermal conductivity for cubic packing 
(cal sec -1 cm -1 ~ -1) 

kary = thermal conductivity of dry specimen 
(cal sec -~ cm -1 ~ -1) 

kwe t = thermal conductivity of wet specimen 
(cal sec -1 cm- '  ~ -1) 

n = number of spheres or cubes per cubic 
centimetre (cm-S) 

P = vol % of aluminium (dimensionless) 
R = effective radius (cm) 
r = radius from the centre of  a particle (cm) 
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In a variety of industrial applications epoxy 
adhesives are required to have an enhanced 
thermal conductivity. The normal method for 
changing this physical property is to add to the 
epoxy a filler of higher conductivity than the 
continuous phase. Prediction of the thermal 
conductivity of such resin-filler composites has 
become the object of a number of theoretical and 
experimental investigations. 

In 1961 Tsao [1] reviewed the literature and 
proposed a two-phase statistical model. His 
analysis was a departure from early work which 
was based on an analogy with electrical conduc- 
tivity. Some of the more recent investigations 
such as Garrett and Rosenberg [2], Meredith and 
Tobias [3], and Hamilton and Crosser [4] still 
used electrical analogy, however, with good 
results. Cheng and Vachon [5] obtained a solution 
to Tsao's equation and concluded that this gave 
better results than the older approach. Sundstrom 
and Chen [6] and Sundstrom and Lee [7] con- 
firmed this finding by applying Cheng and 
Vachon's equation to polystrene and polyethylene 
containing, as a filler, very small glass spheres or 
powdered oxides of aluminium, calcium, or 
magnesium. Nielsen [8,9] has obtained even 
better correlation by modifying earlier equations 
dealing with the elastic moduli of composite 
materials. Because high concentrations of 
metallic powders in an epoxy matrix pose some- 
what of a special problem still another approach 
was tried. 

In the present work a model is proposed based 
on particle-to-particle heat transfer between 
aluminium particles in an epoxy matrix. In the 
absence of typical shape, each powder particle is 
assumed initially to be spherical. This assumption 
is later modified. A diagram of the model is shown 
in Fig. 1. 

The aluminium has such a high conductivity 
(roughly 1500 times that of the epoxy) that we 
may safely presume no significant temperature 
gradients exist within the metal particle. While this 
property promotes a heat flux normal to the sur- 
face, such flux lines are quickly bent into the 
shape of a flux cylinder between two aluminium 
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Figure 1 M o d e l  o f  a l u m i n i u m  sphe re s  in  a n  e p o x y  m a t r i x .  

hemispheres by reason of neighbouring aluminium 
particles and their attendant fluxes. The same 
argument dictates that the transfer of heat must 
be between two metallic hemispheres only, and 
not with other neighbouring particles. 

In the model, heat flows from the upper to the 
lower hemisphere through a set of concentric 
epoxy cylinders of radius r, thickness dr, and 
length 2(R + d) -- 2x/(R 2 -- r2). The parameter d 
is the thickness of a spherical shell of epoxy, 
identical in all respects to the remainder of the 
epoxy, which surrounds each aluminium sphere. 
The conductance then, between two hemispheres 
is 

f:r rdr 
C e = 7rke R + d- -x / (R  2 - - r  2) ' (1) 

while the conductance through either aluminium 
hemisphere is 

R rdr 
C a = 2rrkaf J x/(R-~--- r2 ) . (2) 

0 
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The composite cylinder consisting of two hemi- 
spherical aluminium ends plus intervening epoxy 
has the conductance 

1 _ . ( 3 )  

C c - 2  }_ Ce Rka+ke[(R+d)ln~--~)--R 1 

If we let d be a fraction of R, say fR, and multiply 
Cc by the cylinder length, 2R(1 + f), and divide 
by the cross-sectional area, 7rR 2, we get the 
thermal conductivity of the composite cylinder. 

k c =  (4) 

If the aluminium spheres and their surrounding 
spherical shell of epoxy are stacked in hexagonal 
close-packed symmetry, we may pass a horizontal 
plane through the equators. An equilateral triangle 
joining the centres of three circles in this plane will 
then represent one unit of cross-sectional area 
normal to the heat flow. The area of this triangle is 

A = X/3(a + d )  2 = ~/3R2(1 +])2 (5) 

The fraction of this area occupied by aluminium 
is 

rrR 2 /2 x/Mr 
- (6)  

x/3R2(1 +])2 6(1 +])2 , 

which is transmitting heat with the conductivity 
kc, while the remainder is transmitting heat with 
the conductivity k e.  A l s o ,  in hexagonal symmetry 
the aluminium spheres are not aligned in the 
precise direction of net heat flow, so that the 
downward component is only x/] times the 
sphere-to-sphere flow. The resulting thermal 
conductivity for hexagonal packing is 

~/27r [ke --ke] + ke.  (7) kh -- 6(1 +])2 

A relationship can be obtained between the 
vol % of aluminium and the factor (1 + ]). The 
tetrahedron joining the centres of three spheres in 
one plane and one sphere centrally nested in the 
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plane above represents one unit volume of the 
system. The vol % of aluminium inside this tetra- 
hedron is then 

50x/27rR 3 50V/27r 
P - 3 (R+d)  3 - 3(1 +f )3 '  (S) 

Obtaining the value of (1 + f) from Equation 8, 
Equation 7 becomes 

kh = 0.04199P 2/3 [kc --k~] + ke �9 (9) 

For simple cubic packing of aluminium spheres, 
the unit of volume is a cube containing exactly 
one sphere. With cubic geometry the number of 
spheres (and the number of cubes) per cm ~ is 

N -  e/100 _ 3P (10) 
(4/3)7rR 3 4007rR 3 

The edge dimension of each cube is 

N -1 /3  = R (4007r i  
1 / 3  

\--2P-] (11) 

The fraction of the cross-sectional area normal to 
heat flow which is occupied by aluminium is 

7rR 2 [ 3X/(Ir)P] ~/~ 
- [ 4 - - 4 - 0 ~ J  ( 1 2 )  

R21400~] 2/3 [hU/ 

This fraction is conducting with the conductivity 
kc and the remainder conducts with ke, so that the 
resulting equation for cubic packing is 

kk = O.05612P2/3[kc--kc] + ke .  (13) 

A series of six specimens was prepared ranging 
from 0 to 37.73 vol % of aluminium powder. The 
matrix, or continuous phase, was Epon 828 epoxy 
resin marketed by Shell Chemical Company with 
Epon curing agent D, cured at 150 ~ C for 1 h. The 
powder was a nominal 2pro aluminium, the par- 
ticles of which appeared under the microscope to 
be spherical, but variable in size. Specimens were 
machined from the cured composite to con- 
veniently fit the contact pads of the Cenco-Fitch 
thermal conductivity apparatus. 

The effect of high thermal resistance at the 
interface between the contact pads and the speci- 
men was minimized in the following manner. Each 

specimen was run in two ways: dry, and with both 
specimen surfaces painted with water. The results 
were treated as follows. 

1 1 1 

Cw C Cw~t 

1 1 1 
- -  @ 

C~ C C,~.y 

(14) 

Noting that Cw =23.419 C~,  and that the 
geometry is constant, 

k = kwetkdry (15) 
kwe t -- 1.0446 (kwe ~ -- kdry ) " 

Thermal conductivity k versus vol % ahiminium is 
shown in Fig. 2. 

If we choose an equation for thermal conduc- 
tivity with a coefficient midway between that of 
Equation 9 and that of Equation 13, the fit of 
these data is not good because of the aluminium 
particle shape. Photomicrographs show that the 
aluminium, once incorporated into the matrix, 
agglomerates into much larger, very irregularly 
shaped particles. These aggregates approach each 
other more rapidly than spheres of the same 
volume, as the vol % of metal is increased. Thus 
there is much bridging or near-bridging between 
particles which behave similar to a higher con- 
centration of spheres. In the model of hexagonal 
symmetry or of the cubic symmetry the increase 
of aluminium concentration is represented by an 
increase in the particle radius relative to a unit of 
volume (a tetrahedron or cube). So the irregular 
aggregates may be said to have an effective radius 
which is larger than the equivalent radius of such 
a particle. 

If, in the various equations we let R be an 
effective radius, then the equivalent radius of a 
particle will be somewhat less, R-gR, and that 
Equation 8 becomes 

50,v/27r (1 _g)3 
P = 3(1 +f)3 , (16) 

that is, 

1 + f  = 3.9702p-1/3(1 --g). (17) 

An experimental point from Fig. 2 must be chosen 
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Figure 2 Thermal conductivity versus vol % of aluminium powder. 

(P = 37.73%) to calculate (1 + f)  from a mean of  
Equation 9 and Equation 13. The (1 - -g)  may be 
obtained from Equation 17. With this value the 
theoretical c.urve in Fig. 2 may be plotted. 

Thus the following conclusions may be drawn: 
(1) A particle-to-particle heat transfer model 

may be used to fit the experimentally determined 
thermal conductivities of  epoxy-aluminium 
powder mixtures. 

(2) Lower concentrations of  aluminium powder 
in epoxy pose no difficulty to predicting thermal 
conductivities, however, higher concentrations in 
the vicinity of  the maximum packing density 
present a more difficult case. 

(3) Because the size and shape of  the alu- 
minium particle aggregates are indeterminate, 
data from one experimental point are needed to 
determine the remainder of  the curve. 
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